Jump to ContentJump to Main Navigation
Steward's ForkA Sustainable Future for the Klamath Mountains$

James Agee

Print publication date: 2007

Print ISBN-13: 9780520251250

Published to California Scholarship Online: March 2012

DOI: 10.1525/california/9780520251250.001.0001

Show Summary Details
Page of

PRINTED FROM CALIFORNIA SCHOLARSHIP ONLINE (www.california.universitypressscholarship.com). (c) Copyright University of California Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in CALSO for personal use (for details see http://california.universitypressscholarship.com/page/535/privacy-policy-and-legal-notice). Subscriber: null; date: 21 June 2018

Dam the World

Dam the World

(p.164) Chapter 11 Dam the World
Steward's Fork

James K. Agee

University of California Press

Abstract and Keywords

This chapter focuses on the construction of dams in Trinity. The Arkansas Dam was the first dam built in the gold-rush days. The 1890 landslide in Burnt Ranch, known as the China Slide, created a temporary dam on the Trinity River that extended thirteen miles with the water level about one hundred feet deep. The third big dam occurred in the Salmon River during the big flood of 1964. In the aftermath of the 1964 flood, California's Department of Water Resources (DWR) proposed to build more dams in the North Coast, arguing that coastal dams would help control floods. The chapter highlights the California Water Plan, which proposed damming almost the entire length of the Klamath River and the Trinity River. It also explains the major factors that brought the construction of dams in the Klamath region to a close.

Keywords:   dams, Trinity, Arkansas Dam, China Slide, Trinity River, Water Resources, DWR, California Water Plan, Klamath River

On the approach to Trinity Dam (see figure 29), I am awed by the sheer magnitude of this engineering marvel. The canyon is filled with tons of earth, forming a dam a half mile wide at its top and a half mile thick at its base. It can hold 2.76 million acre-feet of water (an acre-foot is a volume equivalent to one-foot deep over an area of one acre), a volume difficult to imagine. This amount is a bit less than a cubic mile of water but comprises one of the largest lakes in California. Now commonly known as Trinity Lake, the lake was originally known as the Fairview Reservoir and then was renamed Clair Engle Lake after the congressman who ushered through the legislation in the late 1950s that allowed the Bureau of Reclamation to build the dam. During construction, most of the land upstream of the dam below dam elevation was skinned off to bare dirt. Some places, like Carrville and Trinity Alps Resort, were above the 2,370-foot-elevation contour and were spared. Other places below that contour, such as the original Trinity Center and Minersville, were either razed or moved. The old cemetery at Trinity Center, which contained many graves more than a century old, was moved uphill. Most Native American sites were simply inundated due to lack of information about their locations. The project was the largest clear-cut I ever saw. The damming of the Trinity, which was completed in 1962, was not the first such project on the Trinity and was certainly not intended to be the last. But Trinity Dam, along with its small, immediately downstream companion Lewiston Dam, is the most permanent.


Dam the World

Figure 29. Trinity Dam above Lewiston, California. (Source: U.S. Bureau of Reclamation.)

The first dam on the Trinity was built in the gold-rush days. Known as Arkansas Dam, after the company that designed and built it in 1851, it was engineered about 2 miles south of Junction City as a means to clear the riverbed of water to allow placer miners to remove gold from downstream pools. The dam’s builders constructed a race on one side of the floodplain to contain the river flow, exposing the gold-bearing gravel of the river for almost a mile. The first dam and its successor were both washed away by high water; the poorly engineered structures gave way in the first rains. The third attempt in 1854 was more successful as a dam but less successful as an investment. The dam successfully diverted the river, but the excavations of the dry channel proved to be monetarily disappointing, and the dam was abandoned in 1857.

The second known dam on the Trinity was an act of nature, created by a large landslide in the vicinity of Burnt Ranch. In early February 1890, a rare but characteristic flood event took place in the Klamaths. A large snowfall was followed by a “pineapple express,” a warm, rainy storm moving in from the Pacific. Such storms drop a lot of rain, even at high elevation, which melts the snowpack and chokes the streams with runoff. The raging Trinity River, already at flood stage, undercut the bank of an unstable area, and a huge landslide began to rumble down the south side of the canyon. Another slide had taken place along (p.166) the same path about ten years earlier, killing a number of miners working on the gold-bearing bar below and creating a temporary dam on the Trinity River that breached within hours. The 1890 slide filled the canyon with enough material to create a 100-to 150-foot-high dam, causing major damage both downstream and upstream. The landslide produced its own tsunami that rushed downstream and swept away a Chinese mining cabin that was supposedly 300 feet above the river. Reportedly, only two of the five or six Chinese miners who lived there were home at the time, and they were swept to their deaths. The slide became known as China Slide. It backed up the Trinity River, and the swollen channel, choked with debris from the slide and from upstream, became a large lake, increasing in depth and flooding houses on upstream flats during the first day. The lake extended from Burnt Ranch past Taylor Flat, now known as Del Loma. The water created a 13-mile-long lake that stabilized by late afternoon as the floodwaters finally breached the dam. The water level was about 100 feet deep at the dam at that time, and the river slowly began to erode the dam, receding to about 75 feet deep by day four. It took about ten years for the river to regain its old bed. Today, China Slide is identified on topographic maps but is unmarked on the highway except for the occasional slide debris that continues to waste away from upslope. Driving west on Highway 299, one can see the slide just past the Burnt Ranch transfer-station road, and a turnout just past the slide gives the visitor a panoramic view of the river and the slide.

The third big dam occurred in the Salmon River during the big flood of 1964. In December 1964, the circumstances were much the same as in 1890. A pineapple express inundated the snow-covered backcountry, and the steady rain created a swollen river that undercut an unstable slope about 7 miles upstream from the confluence with the Klamath River. Just like the China Slide, the Blommer Slide of December 22 was so massive that it filled the Salmon River canyon and created a dam 150 feet deep. With the steeper gradient of the Salmon River, though, the lake was only 3 miles long when the dam catastrophically failed. Floyd Long, who owned the store near the mouth of the river, had retreated to a cabin up the hill about 5 p.m. as water entered the store. At about 10 p.m. he noticed that the flood-stage river quickly dropped about 6 feet, even though the heavy rain continued unabated. An upstream blockage was his logical conclusion, and it was confirmed about 20 minutes later when the dam broke. The roar of the wall of water and debris was preceded by a hurricane-strength wind, pushed (p.167) ahead of the torrent and breaking and uprooting almost every tree in its path. Though the Department of Water Resources estimated the time of breach at about 5 p.m., Floyd’s story in a letter to Cliff Pierce, which was mailed out on the first Marine helicopter to reach the Salmon River, is the best evidence available for the time of the dam’s rupture. This slide and the massive debris torrent that followed became only a footnote in the chronicle of devastation created by the flood of 1964. That flood swept two couples away from their home downstream at Bluff Creek as a logjam broke at the Highway 96 bridge. Two of the people were found suspended in trees downriver, and the other two washed up on a beach north of Eureka. Today, overgrown traces of the old Highway 96 bridge and the store are barely visible from the Salmon River road.

California’s Department of Water Resources (DWR) jumped on the opportunity to exploit the 1964 flood as justification for more dams in the North Coast country: “Each time the dark swirling waters find more works of man built to slow and control them. But in California, man is not yet to that inevitable point in time when he is master of the flood situation, and he is particularly defenseless in the North Coast” (California Department of Water Resources 1965, 1).

Whereas the DWR appeared to focus on local interests, the reality was that for three decades state authorities had argued that water in the state did not occur where it was needed (Southern California) and that the water projects were primarily for water diversion to the south rather than for flood control. The primary areas to be exploited were those river systems west of the Sacramento River drainage that flowed unimpeded to the sea, including the Eel, the Klamath, and the Trinity rivers. Somehow, if the water of those rivers could be diverted east to either the Sacramento River or a variety of aqueducts and reservoirs in the Sacramento River drainage, they could then be diverted around the delta region where the Sacramento and San Joaquin rivers converged, thereby supplying water farther south in the San Joaquin Valley and also over the Tehachapi Mountains to Los Angeles. The state argued that coastal dams would help control floods in the North Coast but claimed it could not find economic justification for single-purpose flood-control dams. At the time of the 1964 flood, plans had been under way for a decade to dam every North Coast stream and to push that water south.

The story of California is essentially a story of water. The northwestern California portion of the story began in earnest in 1933, when the state legislature passed a plan to dam the Sacramento River north of Redding and to release the flows more uniformly into the river, (p.168) increasing historic summer flows and buffering the winter high flows. The water would move by gravity to the freshwater delta east of the saltwater San Francisco and Suisun bays and then would be pumped south into the San Joaquin Valley before it was lost to the sea. In these Depression years, the state was not able to market its bonds, and the project lay dormant for two years. President Franklin Roosevelt revived it by signing an emergency relief proclamation authorizing the Bureau of Reclamation to construct a large dam on the Sacramento River. Shasta Dam was finished in 1945 as the cornerstone of the Central Valley Project (CVP), and the canal system that sent the water south from the delta by a massive system of pumps began operation in 1951. As a young boy, I remember seeing this artificial river flowing down the west side of the San Joaquin Valley, but I had no idea where all that water came from or why it flowed up the gentle gradient of the valley.

The federal project was also illegally providing water to San Joaquin Valley farmers, because under the 1902 Reclamation Act, the Bureau of Reclamation could provide water only to farmers who owned 160 acres or less and resided on the land. Though later legislation in the 1980s increased the acreage limitation to 960 acres and eliminated the residency requirements, these new requirements still were too restrictive for the corporate farmers of the Central Valley. California had a mantra of growth, and the populist vision of the Bureau of Reclamation was too myopic. California needed its own water plan that was not subject to federal regulations, and this time California would pay for most of it.

In 1944 and again in 1952, California offered to purchase the CVP from the federal government but was refused. The state’s independent planning for water resources began after World War II with passage of the State Water Resources Act, but simultaneously the Bureau of Reclamation continued its grand water plan for the West. Both institutions planned to harness the “excess” water of the north state and ship it south. The bureau’s plan, however, was more regional in scope, with plans to ship water between states, and had also been in process several years longer than the state plan had.

In California, the bureau focused on diverting the Klamath River system inland and south. Diverting it south through Shasta Valley into Shasta Lake was relatively easy, but the real water lay to the west where precipitation (figure 3) and runoff were much higher. The flow of the Klamath near its mouth is much greater than at the point that it crosses Interstate 5. The Klamath diversion was first proposed in a document called the United Western Investigation: Interim Report on (p.169) Reconnaissance, which Marc Reisner, in his book Cadillac Desert, called “the best kept secret in the history of water development in the West” (275). The diversion was but one of many grand schemes that might be described as engineering on steroids. The centerpiece of the project would be an 813-foot-high dam near the mouth of the Klamath named Ah Pah dam, in the language of the Yurok people whose lands (and those of the Hupas) would be flooded. It would stand almost as tall as the Transamerica Pyramid building in San Francisco but of course be much more massive. It would flood 40 miles of the Trinity River, the lower Salmon River, and 70 miles of the Klamath River. It would then pump all this water upstream in the Trinity and through a large Trinity tunnel to the Sacramento River. It and its adjacent reservoirs would capture 15 million acre-feet of water for the south.

What saved the Klamath from the Ah Pah dam had nothing to do with the dam’s local impact. Oregon and Washington interests were outraged that the bureau’s “final solution” might well involve diverting Columbia River water to the south. Southern California interests also fought the Klamath diversion, thinking the plan was simply a way to divert their attention from the potential loss of Colorado River water, which they were using far in excess of their allotment. The bureau was authorized in 1955 to complete Trinity Dam on the upper Trinity, which would divert about 2.5 million acre-feet to the south, but it was never able to revive the large-scale Klamath diversion. Soon after the completion of Trinity Dam, the bureau published a new plan that focused on the Colorado River basin. This plan called for damming the Grand Canyon on both sides of Grand Canyon National Park and constructing two more dams on the Trinity River, leaving open the possibility of the Ah Pah dam as well.

But the water amounts proposed by the plan clearly could not be met without diverting the Columbia, and in 1965, Washington senator Henry “Scoop” Jackson slipped a rider onto a fish and wildlife bill that prevented the bureau from doing feasibility studies without congressional approval. When the bill passed, it prevented the bureau from surprising Congress with requests for project authorization, because it required congressional approval for preliminary feasibility studies. Though Jackson’s concern was to prevent diversion of the Columbia River system, his rider also slowed down any further bureau studies of the Klamath River system. Instead, California continued the fight to divert the North Coast rivers through its own California Water Plan. Its intent for the North Coast streams was to “pirate” the water that would (p.170) otherwise flow to the sea after successful diversion and then transport it south where it was needed most.

Just as nature had built lakes from streams by creating earth-fill dams through landslides, so had it diverted water from one stream to flow down another. Geomorphologists call this process “stream pirating.” It occurs when one stream erodes into the watershed of a second stream and captures the flow upstream from that point, leaving the second stream without its original headwater. Stream pirating can occur in a variety of ways. Where geological formations include very soft bedrock, water can erode much faster through this rock, essentially move its headwater, and divert the upstream portion of any adjacent watershed into which it erodes. A second pirating option is a glacially controlled diversion, whereby meltwater streams in an ice-filled valley begin to erode a low-lying ridge along one side of the valley.

One of the best examples of this second form of pirating is in the Trinity Alps. Robert F. Sharp of the California Institute of Technology wrote in 1960, “Any geologist working in this area who fails to report the diversion of the former headwaters of Coffee Creek into the South Fork of the Salmon River at Big Flat will be characterized by his successors as totally blind” (339). As one moves westerly up Coffee Creek from the Trinity River, the creek bends sharply to the south into a wide, glacial valley now filled in with coarse gravel and in the summer, shimmering with corn silk and sedge and the occasional dude ranch. But the creek becomes smaller and then just disappears, leaving the wide valley called Big Flat without a stream. At the end of the public road another mile up is a Forest Service campground, and to its side is a typical roaring stream exiting the high country of Josephine Lake and heading straight down the valley. But when the stream passes the campground, it turns sharply to the west and descends through a narrow gap into the Salmon River drainage. Big Flat is now the headwater of Coffee Creek, a stream that once continued several miles upstream to the south. Sharp hypothesized that in some past glacial period, the meltwater stream on the west side of the valley glacier ran across a low point of the western ridge of the valley and began to erode the ridge (see figure 30). Because the meltwater eroded about 750 feet of resistant metamorphic bedrock and has now created a fairly open and stable gap, Sharp thinks the event happened before the last glacial period that ended some 10,000 to 15,000 years ago. A typical camper at the Forest Service campground is likely unaware that a major pirating episode occurred there or that he or she would have been sitting on a thousand feet of ice when it happened.


Dam the World

Figure 30. Upper Coffee Creek seen from the west. The upper basin used to flow north (top view) and was the headwater of Coffee Creek. During glaciation, a flow began to the west (middle view), and erosion allowed the South Fork of the Salmon River to pirate the headwater. Today this area is the headwater of the South Fork. (Illustrator: Jack DeLap.)

(p.172) Humans did some stream pirating in the Trinity basin when they used giant monitors for hydraulic mining. The most elaborate diversion system was a series of ditches, tunnels, flumes, and siphons to take water from the Stuart Fork and carry it to Oregon Mountain, some 29 miles away. A first, much shorter ditch was designed to divert West Weaver Creek. It was extended to Rush Creek in 1893 and was named the Chaumont Quitry ditch for the father of the Baroness de La Grange (another story has the ditch named for the engineer who designed it, but the baroness’s maiden name was Chaumont-Quitry). The baron and baroness owned the company with rights to the La Grange gold deposits, and they needed a good supply of water to hose the mountain away. The abundant water of the Stuart Fork encouraged Baron de La Grange to organize an expedition up the Stuart Fork to the “twin lakes” (Emerald and Sapphire lakes), and on his return from his ten-day trip, and after a bit of recuperation, he decided to extend the Chaumont Quitry ditch.

The baron constructed a small dam at the mouth of Emerald Lake to raise the water level, and the diversion began downstream at Deer Creek, a couple of miles beyond the earlier Buckeye diversion above Oak Flat. Through a system of flumes and ditches, La Grange’s ditch extended down the east side of the Stuart Fork, picking up additional water at Deep Creek, and proceeded to Bridge Camp, where it crossed the river in a 30-inch inverted siphon and later an accompanying 18-inch siphon. In November 1893, to celebrate the completion of the ditch, the baron tossed a live rabbit into the siphon, and the poor lagomorph, drowned and crushed by water pressure, emerged dead into the hands of the baroness waiting on the opposite side of the river. From there, the ditch carried water along the western flank of the river, passing through a 9,000-foot tunnel to Rush Creek, where it joined the older Chaumont Quitry ditch. Two more tunnels and several siphons eventually brought the water to West Weaver Creek, where it entered a reservoir at the top of Oregon Mountain. The hydraulic pressure of a gravity feed from the reservoir powered the giant monitors for the mine, which was the largest hydraulic mine in the world at its time of peak production. The entire 29-mile ditch system became known as the La Grange ditch. The system required tremendous maintenance, and after abandonment by its ditch tenders, was inoperable by the early 1920s. Today, remnants of the trestles, tunnels, and ditches remain, and at the terminus of the eastern side ditch on the Stuart Fork is a small wooden cross, representing the end of a ditch and the end of an era.

(p.173) The California Water Plan was the master water pirate of all time. The state described it as an “amazing venture.” But it had to be paid for by bonds authorized by the voters of the state. In 1958, Democrat Edmund G. “Pat” Brown became governor, following Goodwin Knight. Although the plan had been fostered by Republican Knight and his predecessor, Earl Warren, Brown saw it as his legacy: “I wanted to build that goddamned water project…. I wanted it to be a monument to me,” he said in later years (Reisner 1986, 361). The state legislature, through the Burns-Porter Act, authorized $1.75 billion in bonds, well below what they knew the plan would actually cost. Brown, a Northern Californian, strongly supported the bond issue in the 1960 election, even though it largely benefited Southern Californians. He defended this stand by stating that if the bonds didn’t pass, Southern Californians would move to where the water was and despoil Northern California. Of course, the water plan as initially proposed would have despoiled Northern California more than any Southern Californian could, so Governor Brown’s desire for a personal monument was more likely the real reason. Surprisingly, Southern California water interests initially opposed the bonds. They were afraid of losing their hold on Colorado River water and opposed subsidies for southern San Joaquin Valley corporate farmers. But they came around and helped carry the Southern California counties in favor of the bonds. Only ten of the fifty-eight counties voted in favor of the bonds, but the populous Southern California counties had the votes, and the bonds passed by less than a 1 percent margin.

California’s plan was initially more provincial in design than those of the Bureau of Reclamation, focusing first on a large dam on the Feather River, a major tributary to the Sacramento River near Oroville. The state legislature approved the Feather River Project in 1951, and during the years needed for specific design work, the State Water Resources Board developed the California Water Plan, with the Feather River Project as its initial unit. The Oroville Dam would augment flows from Shasta Dam down the Sacramento and help generate power to pump water over the Tehachapi Mountains to Southern California. But beyond the Feather River Project, the California Water Plan was mostly conceptual, dealing with the storage and diversion possibilities in each large hydrologic unit. In recognition of the critical role that water would play in the state’s growth, the board was bureaucratized as the Department of Water Resources in 1956, the year that the California Water Plan was released to the public.


Dam the World

Figure 31. Dams proposed on northwestern California rivers by the California Water Plan of 1957. (Source: California Department of Water Resources 1957. Illustrator: Cathy Schwartz.)

The North Coast rivers were a central theme of the California Water Plan. Each revision of the plan tended to be a variation on the Bureau of Reclamation Klamath diversion. Over the next decade, a number of alternative dam and water-conveyance proposals were released, and every one contemplated damming almost the entire length of the Klamath River (west of what is now Interstate 5) and the Trinity River. One dam would back up water to the foot of the next dam, so that water coming down the Klamath River could be pumped up the length of the Trinity and then conveyed via tunnel to the Sacramento River system. The water would then be shunted south, primarily to feed agricultural interests to the south. The names of the dams and lakes changed at various times, but the plan remained the same: save the great waste of water to the sea.

The first iteration of the plan called for dams along the Klamath, Smith, Van Duzen, Mad, and Trinity rivers (see figure 31). As in the (p.175) Bureau of Reclamation plans, little actual siting information was available, so engineers placed dam and reservoir locations wherever they wanted. There were a lot of good engineering reasons why dams in the most unstable terrain on the Pacific Coast were foolish, but that fact did not stop planners from pursuing the engineering opportunity of a lifetime. They proposed unstable dam sites with caveats: “Recent geologic exploration at the Slate Creek dam site [main stem Klamath] has unearthed unfavorable foundation conditions which indicate that it may be more economical to select an alternative site” and “However, preliminary geological examination indicated conditions which appear somewhat unfavorable to the most economical construction and, in consequence, further study is in process to find a more favorable alternative [Ranger Station dam site on the Mad River]” (California Department of Water Resources 1957, 167, 168).

The voters of California appear to have saved the main stem of the Klamath from the California Water Plan by passing an initiative in 1924 that prohibited dam construction west of what is now Interstate 5; later reinterpretation of the initiative’s legal implications was the ultimate salvation. The Bureau of Reclamation’s Ah Pah dam would not have been constrained by state law, but it was less clear whether state law would constrain state agencies. For the initial years of the water plan, the DWR interpreted this law to apply only to private individuals, and not to the state. Yet after the first iterations of the plan, the main stem of the Klamath began to disappear from the radar screen. By the mid-1960s, the maps showed as many planned but abandoned dam sites as new proposed dams. Five dam sites were abandoned on the main Klamath.

Proposed or enlarged reservoirs on the Van Duzen and Mad rivers would flow through tunnels to the proposed Eltapom Reservoir on the South Fork Trinity River, which would flood Hyampom Valley, and then move through a proposed War Cry tunnel to Burnt Ranch Reservoir on the main-stem Trinity River. Pumps would push this water upstream to Helena Reservoir, which would back water up clear past Douglas City, where it would be pumped through a tunnel, parallel to the existing Clear Creek tunnel that services Trinity Lake, over to the Sacramento Valley. Unlike the Ah Pah proposal and the first water plan, the new plan would spare the Hoopa reservation at the mouth of the Trinity River. This project was a major contraction from previous plans and would net only 3 million to 6 million acre-feet of water. In addition to flooding almost every settlement in the vicinity, it would have (p.176) required complete relocation of Highway 299 where it parallels the Trinity River.

In 1966, Ronald Reagan was elected governor of California, and the DWR apparently thought it had gained a new life. The Bureau of Reclamation (irrigation), the Corps of Engineers (flood control), and the DWR had joined forces in an interagency effort to tame the North Coast rivers after the big floods of 1964. Within a month of the floods, DWR issued a bulletin documenting the damage and extolling the virtues of flood-control dams. In 1967, alternative new plans were proposed for the lower Trinity and Klamath rivers. Although the previous proposal for the Humboldt dam near the mouth of the Klamath was not resuscitated, the new plan suggested that this project should not be dropped from further consideration. The new plans were “neutral” on the issue of dams on the main stem of the Klamath; a DWR bulletin that year noted that no new dams were being proposed on the main stem west of Hamburg. The Hupas were not so fortunate. On paper, a proposed Beaver Reservoir would again flood Hoopa Valley, although this action was clearly illegal without consent of the federal government, because the Bureau of Indian Affairs managed the Hoopa reservation in trust. Indian-allotted lands, those that had passed to individual Indian ownership, could be condemned by the state, so individual Hupa landowners or members of other tribes that had no formal reservation land had no special federal protection (which, of course, for most Native Americans is an oxymoron). The bulletin suggested that perhaps a trade or lease could be negotiated, without federal legislation, and that the Indian issue might be legally complex and emotionally difficult, but not impossible. With an old movie cowboy in office, almost anything was possible for the state of California.

The 1967 plan contained nine options. The Beaver Reservoir was the key element in eight of them, which didn’t look good for the Hupas if one were a betting person. One of the compelling reasons to flood the Hoopa Valley with a dam near the confluence with the Klamath River was that it opened the door to a wing-dam diversion of the Klamath River. Construction of a wing dam would not be constrained by the 1924 law prohibiting a full-channel dam, and the water could be diverted into the Beaver Reservoir and then upstream (see figure 32), fulfilling at least part of the original promise of the Klamath River to deliver water south. With the exception of the Beaver Reservoir, most of the options were similar to those in earlier plans, calling for pumping upstream and a variety of optional tunnels to move the water into the (p.177) Sacramento River drainage. The plan also contained a number of options for moving the water south, once it was out of the coastal area. But then a cowboy rode to the Indians’ rescue.

Dam the World

Figure 32. One of the nine options in the 1967 California Water Plan for the northwestern rivers. PP = pumping station; PH = hydroelectric power station. (Source: California Department of Water Resources 1967. Illustrator: Cathy Schwartz.)

Some of the worst flooding in 1955 and 1964 had occurred on the Eel River because of development on downstream floodplains. The Eel, like (p.178) many of the coastal streams in the North Coast province of California, flows southeast to northwest along fault lines and is separated from the Klamath province by South Fork Mountain, one of the longest continuous mountains in the world. In the aftermath of the 1964 floods, flood-control dams were proposed along the Eel, with the Corps of Engineers in charge of planning. The only dam to survive early planning was the large Dos Rios dam, which would store twice as much water as Shasta Lake but have minimal effects on downstream floods on the main Eel. A local rancher, Richard Wilson, calculated the downstream effect of the dam on a Middle Fork flood and determined that it would reduce a 12-foot crest of the river to 11 feet, 6 inches; his arguments were water-tight. But more importantly, the lake would drown the town of Covelo, which included the Round Valley Indian Reservation. Governor Reagan had to make a decision, and in 1969, he decided against the dam, reportedly saying that the government had already broken enough treaties with the Indians. The death of Dos Rios, together with the spiraling cost of finishing the original plan of the California Water Project, brought the era of large dams in the Klamath region to a close. William Warne, who had worked for the Bureau of Reclamation and headed the California Water Plan, chose to ignore his failure to tame the rivers of the North Coast, instead taking credit for a grand integration of nature and culture in his 1973 history of the Bureau of Reclamation: “The people accept the great project as a part of their way of life. This may well be the ultimate accolade bestowed upon a bureaucrat; his work is so well done that his handiwork, in the thoughts of those whom it serves, becomes one with the mountains and the valleys, the rain and the sun. They accept it and cannot do without it” (160).

The people of the Klamath Mountains did not accept Warne’s dedication and have been able to live without it. Wild and Scenic Rivers legislation, passed by Congress on October 2, 1968, the same day that coastal Redwood National Park was created, finally stopped the arrogant bureaucrats who tried for almost four decades to completely dam the North Coast. In January 1981, just before the inauguration of President Ronald Reagan, Secretary of the Interior Cecil Andrus proclaimed “wild and scenic river” status for most of the threatened reaches of the Klamath, the Trinity, the Smith, and the Eel rivers, ending forever the dreams of the dam builders.

But the battle for water continues to the present. As much as 90 percent of the flow of the Trinity River above the dam, in the early years of its operation, was diverted out of the Trinity basin and east through Clear (p.179) Creek tunnel to Whiskeytown Lake and then to the Sacramento River. Diversion has averaged 74 percent since the inception of the dam (until the implementation of the Trinity River Restoration Program [see chapter 16]). The Trinity River below the dam, after 1964, became about as exciting as the flow from a hose. The whitewater I saw as a child became an overgrown thicket of willow and alder, and the habitat for rearing anadromous fish precipitously declined. The Klamath downstream began to look like a gray water drain, soapy and full of excess nutrients from subsidized agriculture in the Klamath basin. In late summer 2002, a massive number of salmon died in the lower Klamath, and the water wars became habitat wars. How much reclamation is necessary to metamorphose into restoration? In addition to restoring a fully functional natural stream flow, what must we do to allow native organisms to persist at viable levels?